Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Stem Cell Rev Rep ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2276729

ABSTRACT

Since the beginning of the Coronavirus disease (COVID)-19 pandemic in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for more than 600 million infections and 6.5 million deaths worldwide. Given the persistence of SARS-CoV-2 and its ability to develop new variants, the implementation of an effective and long-term herd immunity appears to be crucial to overcome the pandemic. While a vast field of research has focused on the role of humoral immunity against SARS-CoV-2, a growing body of evidence suggest that antibodies alone only confer a partial protection against infection of reinfection which could be of high importance regarding the strategic development goals (SDG) of the United Nations (UN) and in particular UN SDG3 that aims towards the realization of good health and well being on a global scale in the context of the COVID-19 pandemic.In this review, we highlight the role of humoral immunity in the host defense against SARS-CoV-2, with a focus on highly neutralizing antibodies. We summarize the results of the main clinical trials leading to an overall disappointing efficacy of convalescent plasma therapy, variable results of monoclonal neutralizing antibodies in patients with COVID-19 but outstanding results for the mRNA based vaccines against SARS-CoV-2. Finally, we advocate that beyond antibody responses, the development of a robust cellular immunity against SARS-CoV-2 after infection or vaccination is of utmost importance for promoting immune memory and limiting disease severity, especially in case of (re)-infection by variant viruses.

2.
Critical care (London, England) ; 26(1), 2022.
Article in English | EuropePMC | ID: covidwho-1876647

ABSTRACT

Background Acute respiratory distress syndrome (ARDS) has different phenotypes and distinct short-term outcomes. Patients with non-focal ARDS have a higher short-term mortality than focal ones. The aim of this study was to assess the impact of the morphological phenotypes of ARDS on long-term outcomes. Methods This was a secondary analysis of the LIVE study, a prospective, randomised control trial, assessing the usefulness of a personalised ventilator setting according to lung morphology in moderate-to-severe ARDS. ARDS was classified as focal (consolidations only in the infero-posterior part of the lungs) or non-focal. Outcomes were assessed using mortality and functional scores for quality of life at the 1-year follow-up. Results A total of 124 focal ARDS and 236 non-focal ARDS cases were included. The 1-year mortality was higher for non-focal ARDS than for focal ARDS (37% vs. 24%, p = 0.012). Non-focal ARDS (hazard ratio, 3.44;95% confidence interval, 1.80–6.59;p < 0.001), age, McCabe score, haematological cancers, SAPS II, and renal replacement therapy were independently associated with 1-year mortality. This difference was driven by mortality during the first 90 days (28 vs. 16%, p = 0.010) but not between 90 days and 1 year (7 vs. 6%, p = 0.591), at which point only the McCabe score was independently associated with mortality. Morphological phenotypes had no impact on patient-reported outcomes. Conclusion Lung morphologies reflect the acute phase of ARDS and its short-term impact but not long-term outcomes, which seem only influenced by comorbidities. Trial registration: NCT 02149589;May 29, 2014. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04036-7.

4.
Angiogenesis ; 24(4): 755-788, 2021 11.
Article in English | MEDLINE | ID: covidwho-1286153

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.


Subject(s)
COVID-19/metabolism , Myelopoiesis , Neovascularization, Pathologic/metabolism , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , COVID-19/pathology , COVID-19/therapy , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Fibrin Fibrinogen Degradation Products/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Thrombosis/pathology , Thrombosis/therapy , Thrombosis/virology , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolism
5.
Crit Care ; 24(1): 353, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-599603

ABSTRACT

In severe SARS-CoV-2 infections, emerging data including recent histopathological studies have emphasized the crucial role of endothelial cells (ECs) in vascular dysfunction, immunothrombosis, and inflammation.Histopathological studies have evidenced direct viral infection of ECs, endotheliitis with diffuse endothelial inflammation, and micro- and macrovascular thrombosis both in the venous and arterial circulations. Venous thrombotic events, particularly pulmonary embolism, with elevated D-dimer and coagulation activation are highly prevalent in COVID-19 patients. The pro-inflammatory cytokine storm, with elevated levels of interleukin-6 (IL-6), IL-2 receptor, and tumor necrosis factor-α, could also participate in endothelial dysfunction and leukocyte recruitment in the microvasculature. COVID-19-induced endotheliitis may explain the systemic impaired microcirculatory function in different organs in COVID-19 patients. Ongoing trials directly and indirectly target COVID-19-related endothelial dysfunctions: i.e., a virus-cell entry using recombinant angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS-2) blockade, coagulation activation, and immunomodulatory therapies, such as anti-IL-6 strategies. Studies focusing on endothelial dysfunction in COVID-19 patients are warranted as to decipher their precise role in severe SARS-CoV-2 infection and organ dysfunction and to identify targets for further interventions.


Subject(s)
Betacoronavirus , Capillary Permeability/physiology , Coronavirus Infections/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Pneumonia, Viral/physiopathology , COVID-19 , Coronavirus Infections/diagnosis , Endothelium, Vascular/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL